Temporal Relations between Consonants and Vowels in Thai Syllables

by

Chutamanee Onsuwan

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Linguistics) in The University of Michigan 2005

Doctoral Committee:

Professor Patrice Speeter Beddor, Chair
Associate Professor William H. Baxter, III
Assistant Professor José R. Benki
Professor San Duanmu
Professor Robert G. Pachella
To the memory of my grandparents
ACKNOWLEDGMENTS

It is difficult to put into words my appreciation for all the guidance and support of so many people over the course of this work. First and foremost, I wish to express my sincere gratitude to my advisor, Dr. Patrice Speeter Beddor. I wish to thank her for her advice, patience, and encouragement over the years as it helped me endure both the good days and the bad. Her belief in me, even when it seemed that I had wandered away from my objective, enabled her to continue to give me a very long rope to pull. Thanks, Pam.

I would also like to thank Dr. William Baxter, Dr. José Benki, Dr. San Duanmu, and Dr. Robert Pachella for serving on my Ph.D. committee and offering their thoughtful reviews of this work.

I would like to thank my family in the US and in Thailand for all their love and support, which gave me the strength I needed to finish this dissertation. In particular, I would like to thank my mom and dad, my sister, Aunt Pris, Uncle Thamasak, and Uncle Tweechard. I really appreciate all the phone calls and tireless words of encouragement from my nanny, Kulap. I doubt that this dissertation would have been finished without the gentle encouragement and support from Aunt Nongkran and Aunt Utoomporn, and especially my Aunt Phanit, who has always been there for me. Many thanks!

I would like to express my appreciation to all Thai participants, without whose help this research investigation would not have been possible.

Although statistical analyses had proven essential for my data analysis, they were also my worst nightmare. I am, therefore, grateful to Dr. Ed Rothman and Carles Breto at the Center for Statistical Consultation and Research. I would especially like to thank Kathy Welch for her help and for all the time she spent explaining things to me.
I would also like to thank Dr. Arthur Abramson and Dr. Rungpat Roengpitya for their comments and suggestions.

I wish to thank my new colleagues in the Linguistics Department at Thammasat University for granting me a leave and offering their support and encouragement while I revised this work. I owe a special note of thanks to Dr. Deeyu Srinarawat, Dr. Boonruang Chunsuvimol, and Dr. Pintip Tuaycharoen.

After eight years at the University of Michigan, I am indebted to many friends and colleagues. My sincere appreciation goes to Jimmy Harnsberger, Hyo-Young Kim, Mi-Ryoung Kim, and Mieko Ueno, with whom I shared many enjoyable times in the phonetics laboratory. I would like to thank Bridget Anderson, Emily Costello, Eva Juarros-Daussa, Hjuju Hsu, Aman Kumar, Carson Maynard, Nancy (Koch) Perez, Nick Pharris, Annemarie Toebosch, and Ashley Williams for their friendship, prayers, encouragement, and support. I will always cherish my memories of time spent with Amanda (Kohl) Banerjee, Katherine Chen, Stephanie Lindemann, Dushy Mendis, and Jennifer Nguyen. As we all move forward in our careers, I can only hope that we continue our friendship.

My special thanks go to the departmental staff. In particular, I would like to thank Carol Aldrich, Pam Ballard, Karon Plummer, and Sue Suslee for all their help and their friendship.

Throughout the years I have spent on my graduate study, I have been extremely fortunate to receive financial support from a number of sources. I would like to acknowledge the generous contributions of the Department of Linguistics, Horace H. Rackham School of Graduate Studies, and funding from Dr Patrice Speeter Beddor’s NSF Grant.

I would not have been able to complete this work without the support of my husband and best friend, Jay Tawee Pukrushpan. We have traveled winding roads and
heavy seas to arrive at this point. It has been a memorable journey, and I am so glad that we have shared, and continue to share it together.
TABLE OF CONTENTS

DEDICATION ... ii

ACKNOWLEDGMENTS ... iii

LIST OF TABLES .. x

LIST OF FIGURES ... xii

LIST OF APPENDICES ... xvii

CHAPTER

1. INTRODUCTION .. 1
 1.1 Previous Work and Purpose of the Study ... 1
 1.1.1 Overview of Thai Phonology ... 2
 1.1.2 VOT in Thai .. 3
 1.1.3 Vowel Duration in Thai ... 4
 1.1.4 Coarticulatory Vowel Nasalization and Nasal Consonants in Thai ... 5
 1.1.5 Research on Temporal Relations ... 6
 1.1.5.1 Role of Temporal Relations ... 6
 1.1.5.2 Background and Previous Work on the Relation between VOT and Vowel Duration ... 8
 1.1.5.3 Temporal Relations in Thai ... 9
 1.1.6 Theories of Coarticulation in Speech Production and Speech Perception ... 10
 1.1.6.1 Models of Coarticulation ... 11
 1.1.6.2 Perception of Coarticulated Speech .. 13
 1.1.7 Research Plan ... 15
 1.2 Organization of the Dissertation .. 16

2. TEMPORAL RELATIONS BETWEEN VOT OF INITIAL STOPS AND VOWEL DURATION ... 17
 2.1 Experiment 1: Temporal Characteristics of VOT of Initial stops and Vowel Duration ... 18
 2.1.1 Goals of Experiment 1 ... 18
2.1.2 Methods ... 18
 2.1.2.1 Participants .. 18
 2.1.2.2 Speech Materials ... 19
 2.1.2.3 Recording Procedure 20
 2.1.2.4 Acoustic Measurements 20

2.1.3 Results ... 22
 2.1.3.1 Statistical Design 23
 2.1.3.2 VOT Measurement 24
 2.1.3.3 Vowel Duration ... 27
 2.1.3.4 Effect of Coda Type 31
 2.1.3.5 Closure Duration and Coda
 Duration .. 33

2.1.4 Discussion ... 34

2.2 Experiment 2: Effects of Contrastive Vowel Length on the
 Perception of VOT .. 42
 2.2.1 Goals of Experiment 2 42
 2.2.2 Methods .. 43
 2.2.2.1 Participants ... 43
 2.2.2.2 Stimuli .. 43
 2.2.2.3 Testing Procedure 46

2.2.3 Results .. 47
 2.2.3.1 Statistical Design 48
 2.2.3.2 Continua with Vowel Plus Coda
 Portions from Original [pān] 48
 2.2.3.3 Continua with Vowel Plus Coda
 Portions from Original [pāan] 50
 2.2.3.4 Continua with Vowel Plus Coda
 Portions from Original [pāt] 51
 2.2.3.5 Continua with Vowel Plus Coda
 Portions from Original [pāat] 52

2.2.4 Discussion ... 53

2.3 Experiment 3: Effects of Aspirated-Unaspirated Contrast on the
 Perception of Vowel Length .. 56
 2.3.1 Goals of Experiment 3 56
 2.3.2 Methods .. 57
 2.3.2.1 Participants ... 57
 2.3.2.2 Stimuli .. 57
 2.3.2.3 Testing Procedure 58

2.3.3 Results .. 59
 2.3.3.1 Statistical Design 59
 2.3.3.2 Continua with Vowel Plus Coda
 Portion from Original [pāat] 60
 2.3.3.3 Continua with Vowel Plus Coda
 Portion from Original [pāak] 61

2.3.4 Discussion ... 62
3. TEMPORAL RELATIONS AMONG VOWEL DURATION, VOWEL NASALIZATION, AND NASAL CODAS

3.1 Experiment 4: Temporal Characteristics of Vowel Duration, Vowel Nasalization, and Nasal Codas

3.1.1 Goals of Experiment 4

3.1.2 Methods

3.1.2.1 Participants

3.1.2.2 Speech Materials

3.1.2.3 Recording Procedure

3.1.2.4 Acoustic Measurements

3.1.3 Results

3.1.3.1 Statistical Design

3.1.3.2 Vowel Duration

3.1.3.3 Nasal Consonant Duration

3.1.3.4 Rhyme Duration

3.1.3.5 Vowel Nasalization Duration

3.1.3.6 Percent Vowel Nasalization

3.1.3.7 Total Nasalization

3.1.4 Discussion

3.2 Experiment 5: Interactions of Vowel Duration, Vowel Nasalization, and Nasal Codas in Perception

3.2.1 Goals of Experiment 5

3.2.2 Methods

3.2.2.1 Participants

3.2.2.2 Stimuli

3.2.2.3 Testing Procedure

3.2.3 Results

3.2.3.1 Statistical Design

3.2.3.2 Stage 1: Final Stop (/pát/ and /pát/) vs. Final Nasal (/pán/ and /pán/)

3.2.3.3 Stage 2: /pát/ vs. /pát/

3.2.3.4 Stage 2: /pán/ vs. /pán/

3.2.4 Discussion

3.3 General Discussion

4. CONCLUSIONS

4.1 Summary of Findings

4.2 Theoretical Implications

4.3 Future Research
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Thai vowel system.</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Average duration (in ms) of VOT, short and long vowels (voiced vocalic portions only) and their ratios according to coda contexts, places of articulation and aspiration. Measures pooled across 5 speakers.</td>
<td>32</td>
</tr>
<tr>
<td>2.2</td>
<td>Average duration (in ms) of VOT and closure according to places of articulation and initial aspiration. Measures pooled across 2 speakers and vowel contexts.</td>
<td>33</td>
</tr>
<tr>
<td>2.3</td>
<td>Average duration (in ms) of vowel and coda according to initial aspiration and vowel length. Measures pooled across 2 speakers.</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>Average vowel nasalization (in percent) as a function of vowel length and vowel quality, pooled across nasal consonants, tones and 4 speakers.</td>
<td>86</td>
</tr>
<tr>
<td>3.2</td>
<td>Pooled logistic regression model of /patég/ and /pątég/ (T family) in the /patég(a)/-/pątég(a)/ contrast identification responses. The independent variables are VNAS, VDUR, NDUR, VNAS×VDUR, VNAS×NDUR, and VDUR×NDUR.</td>
<td>109</td>
</tr>
<tr>
<td>3.3</td>
<td>Population-averaged model of /patég/ and /pątég/ (T family) in the /patég(a)/-/pątég(a)/ contrast identification responses. The independent variables are VNAS, VDUR, NDUR, VNAS×VDUR, VNAS×NDUR, and VDUR×NDUR.</td>
<td>110</td>
</tr>
<tr>
<td>3.4</td>
<td>Logistic regression parameters of /patég/ and /pątég/ (T family) in the /patég(a)/-/pątég(a)/ contrast identification responses for each listener and averages.</td>
<td>110</td>
</tr>
<tr>
<td>3.5</td>
<td>Pooled logistic regression model of /patég/ in the /patég/-/pątég/ contrast identification responses. The independent variables are VNAS, VDUR, NDUR, VNAS×VDUR, VNAS×NDUR, and VDUR×NDUR.</td>
<td>113</td>
</tr>
</tbody>
</table>
3.6 Population-averaged model of /pat/ in the /pat/-/pat/ contrast identification responses. The independent variables are VNAS, VDUR, NDUR, VNAS×VDUR, VNAS×NDUR, and VDUR×NDUR..... 113

3.7 Logistic regression parameters of /pat/ in the /pat/-/pat/ contrast identification responses for each listener and averages .. 114

3.8 Pooled logistic regression model of /pan/ in the /pan/-/pan/ contrast identification responses. The independent variables are VNAS, VDUR, NDUR, VNAS×VDUR, VNAS×NDUR, and VDUR×NDUR..... 117

3.9 Population-averaged model of /pan/ in the /pan/-/pan/ contrast identification responses. The independent variables are VNAS, VDUR, NDUR, VNAS×VDUR, VNAS×NDUR, and VDUR×NDUR..... 118

3.10 Logistic regression parameters of /pan/ in the /pan/-/pan/ contrast identification responses for each listener and averages ... 118
LIST OF FIGURES

Figure

2.1 Wide-band spectrogram (top panel) and waveform display (bottom panel) with the first cursor placed at onset of closure duration; the second cursor at VOT onset; the third at vowel onset; the fourth at vowel offset and the fifth at coda offset. The word is /kèet/ produced by Speaker D (female). Closure duration, VOT, vowel duration and coda duration are 74.7, 13.1, 140.6 and 16.5 ms respectively. 22

2.2 VOT (in ms) of unaspirated stops in phonological short and long vowel contexts. Measures pooled across 5 speakers...................................... 26

2.3 VOT (in ms) of aspirated stops in phonological short and long vowel contexts. Measures pooled across 5 speakers. Here and in subsequent figures, /_ b/ is represented as / _h/ ... 26

2.4 VOT (in ms) of unaspirated and aspirated stops according to different vowel quality. Measures pooled across 5 speakers. Here and in subsequent figures, /æ/ is represented as /ae/.. 27

2.5 Duration (in ms) of short and long vowels pooled across 5 speakers and consonantal contexts... 28

2.6 Vowel duration (in ms) according to vowel quality in the context of unaspirated and aspirated stops. Measures pooled across 5 speakers........ 29

2.7 Duration (in ms) of short and long vowels according to place of articulation and aspiration. Measures pooled across 5 speakers............. 30

2.8 Average duration (in ms) of VOT and short and long vowels according to places of articulation and aspiration. Measures pooled across 5 speakers .. 31

2.9 A scatter diagram showing individual 400 measures (from 5 speakers) of VOT (in ms) according to place of articulation and aspiration. Here, Speaker 1 is in fact Speaker A, Speaker 2, B and so on and so forth .. 37
2.10 A scatter diagram showing individual 400 measures (from 5 speakers) of vowel duration (in ms) according to phonemic length and vowel quality. Here, Speaker 1 is in fact Speaker A, Speaker 2, B and so on and so forth.. 41

2.11 Pooled identification responses of 19 Thai listeners to the 13-step VOT continuum in short (diamonds) and long (circles) vowel contexts. Vowel portions were excised from original [päh]................................. 49

2.12 Pooled identification responses of 19 Thai listeners to the 13-step VOT continuum in short (diamonds) and long (circles) vowel contexts. Vowel portions were excised from original [păan] 51

2.13 Pooled identification responses of 19 Thai listeners to the 13-step VOT continuum in short (diamonds) and long (circles) vowel contexts. Vowel portions were excised from original [pât]................................. 52

2.14 Pooled identification responses of 19 Thai listeners to the 13-step VOT continuum in short (diamonds) and long (circles) vowel contexts. Vowel portions were excised from original [pàat].............................. 53

2.15 Pooled identification responses of 20 Thai listeners to the 17-step vowel continuum preceded by unaspirated (diamonds) and aspirated (circles) stop. Vowel portions were excised from original [pàat]......... 61

2.16 Pooled identification responses of 20 Thai listeners to the 17-step vowel continuum preceded by unaspirated (diamonds) and aspirated (circles) stop. Vowel portions were excised from original [pàak].............. 62

3.1 Wide-band spectrogram (top panel) and waveform display (bottom panel) with the first cursor placed at vowel onset, the second cursor at vowel offset, and the third at coda offset. The token is /bëŋ/ produced by Speaker C (female). Vowel duration is 177 ms and nasal coda duration is 142 ms... 71

3.2 Wide-band spectrogram (top panel) and waveform display (bottom panel) with the first cursor placed at onset of vowel nasalization; the second and the third cursors remain the same as in Figure 3.1. The token is /bëŋ/ produced by Speaker C (female). Absolute duration of vowel nasalization is 70.5 ms and percent vowel nasalization is 39.8%..... 72

3.3 Four consecutive FFT displays (in 10 ms increments) of the vocalic portion of /bëŋ/ produced by Speaker C, illustrating the increasing amplitude of a nasal formant in later portions of the vowel. Panel (2) corresponds to the onset of vowel nasalization.. 74
3.4 Average duration (in ms) of vowels and final nasal consonants as a function of vowel length (top vs. bottom) and vowel quality (/i(i) e(e) æ(æ) a(a)/), pooled across nasal consonants (/m n ñ/), tones (mid, low, high) and 4 speakers. Bars are aligned at vowel onset. The numbers indicate durations of vowel and nasal consonant 77

3.5 Average duration (in ms) of vowels and final nasal consonants as a function of vowel length, vowel quality and tone (mid: top, low: center and high: bottom panels), pooled across nasal place (/m n ñ/) and 4 speakers. Bars are aligned at vowel onset. The numbers indicate durations of vowel and nasal consonant 78

3.6 Average duration (in ms) of vowels and final nasal consonants as a function of nasal place and tone (mid: top, low: center and high: bottom panels), pooled across vowel length, vowel quality and 4 speakers. Bars are aligned at vowel onset. The numbers indicate durations of vowel and nasal consonant. /ng/ represents a velar nasal 79

3.7 Average duration (in ms) of oral and nasalized vowel portions and final nasal consonants as a function of vowel length (top vs. bottom) and vowel quality (/i(i) e(e) æ(æ) a(a)/), pooled across nasal consonants (/m n ñ/), tones (mid, low, high) and 4 speakers. Bars are aligned at vowel onset. The numbers indicate duration of the nasalized vowel .. 83

3.8 Average durations (in ms) of oral and nasalized vowel portions and final nasal consonants as a function of vowel length, vowel quality and tone (mid: top, low: center and high: bottom panels), pooled across nasal consonants (/m n ñ/) and 4 speakers. Bars are aligned at vowel onset. The numbers indicate duration of the nasalized vowel 84

3.9 Average durations (in ms) of oral and nasalized vowel portions and final nasal consonants as a function of nasal place and tone (mid: top, low: center and high: bottom panels), pooled across vowel length, vowel quality and 4 speakers. Bars are aligned at vowel onset. The numbers indicate durations of the nasalized vowel. /ng/ represents a velar nasal ... 85

3.10 Average durations (in ms) of the nasalized vowel and final nasal consonants as a function of vowel length, vowel quality and tone (mid: top, low: center and high: bottom panels), pooled across nasal consonants (/m n ñ/) and 4 speakers. Bars are aligned at onset of vowel nasalization... 88

3.11 Representation of a constant velic gesture, which is aligned with the midpoint of N in the production of CVN and CVVN sequences. Here,
the white bars represent oral vowel portions, striped bars: nasalized vowel portions, and dark bars: nasal consonants ... 92

3.12 Representation of all the 126 test stimuli in the 3 /pà(a)t/-/pà(a)n/ series (42 stimuli per each series) .. 97

3.13 Pooled identification responses of 18 Thai listeners as a function of vowel duration (abscissa; 91-229 ms) and nasal coda duration (6 groups from left to right; 0-175 ms) in the first test series where percent vowel nasalization is equal to 0%. The four responses were /pàt/ (open circles), /pàat/ (open triangles), /pàn/ (filled circles) and /pàan/ (filled triangles)... 100

3.14 Pooled identification responses of 18 Thai listeners as a function of vowel duration (abscissa; 91-229 ms) and nasal coda duration (6 groups from left to right; 0-175 ms) in the second test series where percent vowel nasalization is equal to 30%. The four responses were /pàt/ (open circles), /pàat/ (open triangles), /pàn/ (filled circles) and /pàan/ (filled triangles)... 101

3.15 Pooled identification responses of 18 Thai listeners as a function of vowel duration (abscissa; 91-229 ms) and nasal coda duration (6 groups from left to right; 0-175 ms) in the third test series where percent vowel nasalization is equal to 60%. The four responses were /pàt/ (open circles), /pàat/ (open triangles), /pàn/ (filled circles) and /pàan/ (filled triangles)... 102

3.16 Pooled identification responses of 18 Thai listeners as a function of vowel duration (abscissa; 91-229 ms) and nasal coda duration (6 groups from left to right; 0-175 ms) in the third test series where percent vowel nasalization is equal to 0%. Here, /pàt/ and /pàat/ responses (open circles) are grouped together, as are /pàn/ and /pàan/ responses (filled triangles) ... 103

3.17 Pooled identification responses of 18 Thai listeners as a function of vowel duration (abscissa; 91-229 ms) and nasal coda duration (6 groups from left to right; 0-175 ms) in the third test series where percent vowel nasalization is equal to 30%. Here, /pàt/ and /pàat/ responses (open circles) are grouped together, as are /pàn/ and /pàan/ responses (filled triangles) ... 104

3.18 Pooled identification responses of 18 Thai listeners as a function of vowel duration (abscissa; 91-229 ms) and nasal coda duration (6 groups from left to right; 0-175 ms) in the third test series where percent vowel nasalization is equal to 60%. Here, /pàt/ and /pàat/
responses (open circles) are grouped together, as are /pàn/ and /pàan/
responses (filled triangles)..105

3.19 Binary logistic model of the response probability of /pàt/ and /pàat/ (T
family) in the /pà(a)t/-/pà(a)n/ contrast, for Vowel Nasalization
(VNAS) equals 30%. The plot represents the population-averaged
analysis...109

3.20 Binary logistic model of the response probability of /pàt/ in the /pàt/-
/pàat/ contrast, for Vowel Nasalization (VNAS) equals 30%. The plot
represents the population-averaged analysis...112

3.21 Binary logistic model of the response probability of /pàn/ in the /pàn/-
/pàn/ contrast, for Vowel NASalization (VNAS) equals 0%. The plot
represents the population-averaged analysis (the model excludes the
predicted values of N equals 0)...116

3.22 Binary logistic model of the response probability of /pàn/ in the /pàn/-
/pàan/ contrast, for Nasal Duration (NDUR) equals 32. The plot
represents the population-averaged analysis (the model excludes the
predicted values of N equals 0)..117

3.23 Pooled identification responses of 18 Thai listeners of the /pàt/ and
/pàat/ (T family) responses in the /pà(a)t/-/pà(a)n/ contrast, for Nasal
Duration (NDUR) equals 32 (left panel) ms and 64 ms (right panel).......121
LIST OF APPENDICES

Appendix

A. Word List of Experiment 1 .. 135
B. Acoustic Measures (in ms) from Experiment 1 137
C. 50% Crossover Values from Experiment 2 140
D. 50% Crossover Values from Experiment 3 143
E. Word List of Experiment 4 .. 145
F. Acoustic Measures (in ms) from Experiment 4 147
G. Pooled Identification Responses from 5 149